Procs
proc gcn[TT](input, adjacency, weight: Variable[TT]; bias: Variable[TT] = nil): Variable[ TT]
-
Input:
- A x Variable of shape nodes, in_features
- An adjacency matrix of shape nodes, nodes
- A weight Variable of shape out_features, in_features
- Optionally a bias Variable of shape 1, out_features
Return:
- (AX)W+b
proc init[T](ctx: Context[Tensor[T]]; layerType: typedesc[GCNLayer[T]]; numInput, numOutput: int): GCNLayer[T]
- Initializes a graph convolutional layer with num_input input features and num_output output features. Using Kaiming He initialisation for weights to provide decent performance in most cases. Biases are set to zero. Source Edit