Fork me on GitHub

src/arraymancer/stats/distributions

  Source Edit

Procs

proc box(x: float): float {....raises: [], tags: [], forbids: [].}
provides a box distribution   Source Edit
proc epanechnikov(x: float): float {....raises: [], tags: [], forbids: [].}
provides an Epanechnikov distribution   Source Edit
proc gauss[T](x, mean, sigma: T; norm = false): float

Returns a value of the gaussian distribution described by mean, sigma at position x.

If norm is true the value will be normalized by 1 / sqrt(2Ï€).

Based on the ROOT implementation of TMath::Gaus: https://root.cern.ch/root/html524/src/TMath.cxx.html#dKZ4iB

Inputs are converted to float.

  Source Edit
proc gauss[T](x: Tensor[T]; mean, sigma: T; norm = false): Tensor[float]
Returns a tensor evaluated at all positions of its values on the gaussian distribution described by mean and sigma.   Source Edit
proc triangular(x: float): float {....raises: [], tags: [], forbids: [].}
provides a triangular distribution   Source Edit
proc trigonometric(x: float): float {....raises: [], tags: [], forbids: [].}
provides a trigonometric distribution   Source Edit

Templates

template box[T](t`gensym0: Tensor[T]): Tensor[float]
  Source Edit
template epanechnikov[T](t`gensym3: Tensor[T]): Tensor[float]
  Source Edit
template triangular[T](t`gensym1: Tensor[T]): Tensor[float]
  Source Edit
template trigonometric[T](t`gensym2: Tensor[T]): Tensor[float]
  Source Edit
Arraymancer Technical reference Tutorial Spellbook (How-To's) Under the hood